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Abstract. Increasing air temperatures reduce the duration of
ice cover on lakes and rivers, threatening to alter their water
quality, ecology, biodiversity, and physical, economical and
recreational function. Using a unique in situ record of freeze
and break-up dates, including records dating back to the be-
ginning of the 18th century, we analyze changes in ice du-
ration (i.e., first freeze to last break-up), freeze and break-up
patterns across Sweden. Results indicate a significant trend
in shorter ice duration (62 %), later freeze (36 %) and ear-
lier break-up (58 %) dates from 1913-2014. In the latter 3
decades (1985-2014), the mean observed ice durations have
decreased by about 11d in northern (above 60° N) and 28 d
in southern Sweden relative to the earlier three decades. In
the same period, the average freeze date occurred about 10d
later and break-up date about 17 d earlier in southern Swe-
den. The rate of change is roughly twice as large in south-
ern Sweden as in the northern part. Sweden has experienced
an increase in occurrence of years with an extremely short
ice cover duration (i.e., less than 50 d), which occurred about
8 times more often in southern Sweden than previously ob-
served. Our analysis indicates that even a 1°C increase in
air temperatures in southern (northern) Sweden results in a
mean decrease of ice duration of 22.5 (£7.6)d. Given that
warming is expected to continue across Sweden during the
21st century, we expect increasingly significant impacts on
ice cover duration and hence, ecology, water quality, trans-
portation, and recreational activities in the region.

1 Introduction

The world’s freshwater systems are critically important for
all humans and they have experienced significant environ-
mental changes due to human activities and anthropogenic
climate change (Dudgeon et al., 2006; Vorosmarty et al.,
2010). In the Arctic regions climate change is amplified,
mainly due to temperature feedbacks and change in surface
albedo (Pithan and Mauritsen, 2014). A global mean temper-
ature increase of +2 °C from the “pre-industrial” level would
result in a higher mean temperature increase in Scandinavia
(Vautard et al., 2014). As temperatures are projected to con-
tinue to rise, they are expected to cause major physical, eco-
logical, social, and economic changes (Parmesan and Yohe,
2003).

One impact of global warming is the reduction in ice cover
duration of freshwater systems, often associated with both a
later freeze and an earlier break-up of the ice cover (Duguay
et al., 2003). Previous studies showed that ice duration of in-
land waters is strongly correlated with and driven by air tem-
perature and solar radiation (Sharma et al., 2019; Kropacek
et al., 2013; Duguay et al., 2015; Livingstone and Adrian,
2009). Analyses from different parts of the world indicate
that the duration of ice cover on lakes and rivers is sensitive to
climatic change and variability (Prowse et al., 2011; Benson
et al., 2012; Beltaos and Prowse, 2009; Takacs, 2011; Lati-
fovic and Pouliot, 2007; Magnuson et al., 2000). Decreased
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ice cover duration and earlier ice break-up have critical eco-
logical consequences, influencing the timing of photosynthe-
sis (Quayle et al., 2002; Leppéranta et al., 2012), productivity
and biodiversity of phytoplankton, and the occurrence of fish
kill (Leppéranta et al., 2003; Watz et al., 2016), as well as
shaping the vegetation of flowing waters (Lind et al., 2014).
Changes in ice duration modulate the energy and moisture
exchange over the water surface (Duguay et al., 2003) and the
timing of vertical mixing and stratification in lakes (Bengts-
son, 2011).

In Sweden, lakes cover about 9 % of the total land area
(Henestal et al., 2015) and surface water provides 50 % of its
drinking water (Rosborg and Kozisek, 2019). In many high-
latitude regions, including parts of Sweden, ice cover is also
an important part of transportation and communication (Jef-
fries et al., 2012; Knoll et al., 2019). The Swedish Transport
Administration, Trafikverket, has expressed concerns regard-
ing the stability and duration of ice roads (i.e., frozen water
bodies) and has requested that further research be conducted
on this topic. The mean temperatures of winter months in
Sweden are expect to increase more than in the summer
months, with models predicting that a global mean temper-
ature increase of +2 °C from pre-industrial would result in
an increase of mean winter temperature of +1.5°C in the
south to +3 °C in the north of Sweden compared to mean the
temperatures from 1971-2000 (Vautard et al., 2014). Thus,
reliable information about the rate of change in ice cover du-
ration, which we investigate here, is needed to advise policy
and decision makers, inform impact and adaptation activities,
and understand potential impacts on recreational activities
(e.g., ice fishing, ice boating, skiing, spiritual ceremonies,
and ice skating) (Knoll et al., 2019).

Previous studies have examined the timing of ice cover
on lakes and rivers in Sweden. For instance, Eklund (1999)
provided an overview of ice data up to 1999, and described
methods of ice cover observation. Weyhenmeyer et al. (2004)
also analyzed ice break-up data across Sweden and identi-
fied regional differences in the timing and length of ice cover
across the country’s water bodies. They concluded that cooler
regions (i.e., northern Sweden) are less sensitive to increas-
ing air temperature than temperate regions (i.e., southern
Sweden) in terms of earlier break-up of ice cover. Comparing
the colder time period of 1961-1990 to the warmer period
of 1991-2002 (by 0.8 °C), they observed that ice break-up
occurred 17d earlier in the southern region during the lat-
ter period, but only 4 d earlier in the northern region. Hence,
they concluded that increasing air temperature can drastically
shift the timing of lake ice break-up in the warmer and south-
ern regions of Sweden, while it is less drastic in the northern
parts. Since a long time series of lake ice observations can
serve as a proxy for climate change and provide a convenient
climate index (Duguay et al., 2003), we extend these previ-
ous studies using more recent observations, longer records of
ice duration, break-up, and freeze data, and more observation
sites across the whole of Sweden.
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Weyhenmeyer et al. (2011) investigated the ice phenology
from 1213 lakes and 236 rivers in 12 different countries, in-
cluding Sweden. They found a stronger decrease in ice du-
ration across regions with shorter durations and air temper-
atures below 0°C, such as southern Sweden below 61° N.
They suggested that 3.7 % of the world’s lakes larger than
0.1km? are at risk of becoming open-water systems in the
near future. Sharma et al. (2019) estimated that the number of
lakes with intermittent winter ice cover are increasing, from
currently 14 800 lakes in the Northern Hemisphere to 35 300
with 2 °C warming and 230400 with 8 °C, impacting up to
about 400 million and 650 million people, respectively.

In this study, we characterize the ice cover duration using
in situ observations, from the Swedish Meteorological and
Hydrological Institute, of ice cover freeze and break-up from
752 lake and river observation sites in Sweden (see the Meth-
ods and data section) to better understand the relationship be-
tween temperature variability and ice duration and associated
trends. We quantify temporal and regional shifts in the dis-
tributions of ice freeze and break-up dates and ice durations
across Sweden since they remain poorly understood. Com-
pared with earlier studies (e.g., Weyhenmayer et al., 2004),
we use more recent and updated observations on ice duration,
break-up and freeze dates and their probability distributions,
and quantify the sensitivity of ice properties to a unit degree
of temperature change.

2 Methods and data
2.1 Ice data observations, monitoring, and uncertainty

We used ice data records obtained mainly from the Swedish
Meteorological and Hydrological Institute (SMHI), which
include freeze and break-up dates. In total, the dataset in-
cludes observations from 752 observations sites, consisting
of 677 (~90 %) lakes and 75 (~ 10 %) rivers. Observations
span from 1700-2014; however, the coverage and locations
vary over time. Observation sites from 1871 can be seen in
Fig. 1. The number of observations from 1860-2014 are pre-
sented in Fig. 2.

Since 1870 lake ice was observed systematically and man-
ually from the shore by an observer responsible for monitor-
ing that lake or the part or bay of the large lake (Eklund,
1999). Some records date back even longer and come for
example from records taken from boats. While most obser-
vations used here were provided by SMHI, Torne River ob-
servations were made by the Finnish Environmental Institute
(SYKE). The “freeze date” is defined as the first date after
which the whole lake, except for small segments, is ice cov-
ered for a minimum of 3 consecutive days (Eklund, 1999).
Moreover, the “break-up date” is the day the entire lake be-
comes free of ice, except for small parts of ice close to the
shore and around obstacles (Eklund, 1999).
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Figure 1. Mean ice break-up date in Sweden over 10-year periods from 1871 to 2010. The gray line represents the outline of Sweden. Shading
represents the number of days after 31 August when ice break-up occurs. The blue, purple, and red contour lines represent a break-up date
by the 1 June, 1 May, and 1 April, respectively. Black dots indicate the observation sites for each 10-year period.

In this study, we define ice duration as the number of days
between the first freeze date and the last break-up date. The
ice year is defined from 1 September to 31 August. The date
1 September was selected for practical reasons after finding
very few observations of freeze dates prior to or break-up
dates after it. Lakes and rivers may have multiple freeze and
break-up dates during a winter period. For consistency, here
we use the first freeze and last break-up dates for data anal-
ysis. Moreover, we do not separate years with no ice cover
from years with no data, since no records exist for years
without ice cover. The observations include lakes, and some
rives with a variety of sizes. For big lakes, such as Vinern
(5650 kmz) or Milaren (1072 kmz), a smaller somewhat sep-
arated part, often a bay, is observed.

One source of uncertainty is that the lengths of ice records
vary significantly. Selecting a common period of overlap
would lead to elimination of significant observations. To ad-
dress this issue and to utilize all the observations, we have
used different time periods for different statistical analyses.
Depending on the method, we designed the periods such that
we can incorporate as much of the data as possible in our
analysis. Other potential sources of uncertainties include hu-
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man error in observations and later manual digitalization.
The SMHI notes that the definition of freeze and break-up
during observations and digitalization of the data might not
have always been consistent.

2.2 Statistical tests, trends, and spatial analyses

We analyzed the mean break-up dates over 10-year intervals
from 1871 to 2010 (Fig. 1) using all observations over the
time period, and implemented bivariate interpolation into a
grid for irregularly spaced input data. Bilinear interpolation
is applied using algorithms from the R package “Akima” and
“interp” function (Akima et al., 2016). The mean value was
used for observations sites with more than 1 year of data
(duplicates). As a result, each observation site is only rep-
resented once; however, the mean value used can be a com-
bination of 1-10 years of data for that point.

Records were tested for statistically significant trends from
1913 to 2014 for ice duration, freeze and/or break-up dates.
A significance level of 95 % was used to evaluate trends
in the ice phenology variables (freeze date, break-up date,
and ice duration). The Mann-Kendall R package “Kendall”
(McLeod, 2011) was used to perform the trend tests (Kendall,
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Figure 2. Fraction of the total number of observed lakes and rivers with ice cover each day of the ice year (September—August) for all
observed water bodies from (a) the entirety of Sweden and (b) north and (c) south of 60° N in Sweden from 1860-2014. White-gray coloring
represents days with 90 %—-100 % (i.e., 0.9-1.0) of lake-ice area covered. Panel (d) displays the number of observations each year.

1938). Observation points with at least 81 years of recorded
data from the 101-year time period (maximum of 20 % miss-
ing data) were used in the analysis.

Moreover, we used ordinary least squares via the Im()
function in the R package “stats” to compute the slope of
the best linear fit for the temperature and ice variables. The
slopes serve as a measure of the change in the number of
days (of ice duration, freeze date, or break-up date) per 1 °C
temperature increase (Fig. 6).

3 Results

3.1 Earlier ice break-up since the end of the 19th
century

We analyze all break-up date observations from 1871 on-
ward, since systematic observations started in 1870 (Eklund,
1999). Figure 1 presents the mean break-up dates from 1871
to 2010. We generated the maps shown in Fig. 1 by bilinearly
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interpolating the data gathered by the Swedish Meteorologi-
cal and Hydrological Institute (SMHI) across the country. As
time progresses in Fig. 1, the area with break-up dates after
June decreases (blue contour), and the areas of break-up prior
to April (purple contour) and May (red contour) move north-
ward. From 1871 to 1930 and 1951 to 1970 the geograph-
ical mean break-up pattern is similar, while the years 1931
to 1950 display a larger area with break-up before April. Ice
break-up prior to June even extends into the northwest moun-
tain areas of Sweden during 2001-2010. The largest differ-
ences in break-up dates are found in the later period of 1991
to 2010. In the last time period (2001-2010), the ice break-up
generally occurred prior to the first day of June even in the
northern part of Sweden. Figure 1 also presents where ob-
servations were recorded over each decade. Note that there
is a change in the number of observation points (Fig. 2).
There are less observations in the first four decades and a de-
creasing number of records during the last two decades (see
Fig. 2d).

https://doi.org/10.5194/tc-16-2493-2022
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Furthermore, we analyze all water bodies with observa-
tions of freeze and subsequent break-up dates in Sweden. For
each day of the ice year (September—August) from 1860-
2014, Fig. 2 shows the fraction of observed water bodies
across Sweden that are ice covered. In other words, the
fraction represents the total number of ice observations for
that specific day divided by the total number of observa-
tions available for that year. To better understand the rela-
tive fraction of ice-covered water bodies for a given year,
which ranges from zero (days with no observed ice cover)
to unity (days where all observed sites were ice covered),
Fig. 2d quantifies the number of available observations used
per year. Figure 2 further demonstrates that a decrease in ice
cover duration has occurred since the 1860s. Moreover, since
the late 1980s, there is a noticeable increase in interannual
variability and years with extremely short ice cover duration,
especially in southern Sweden (see Fig. 2), which we further
investigate below.

The Torne River and Visterasfjirden have the longest
record of break-up dates in the data provided to us by SMHI.
The Torne River, located on the Sweden-Finland border (see
Fig. S6 in the Supplement), have observations dating back to
the 18th century (Johansson, 1932; Kajander, 1995; Korho-
nen, 2006, Sharma et al., 2016). The data include 291 years
of break-up dates (1700-2009, except 1770-1789), recorded
for the downstream portion of the Torne River, close to city of
Haparanda. We find a significant trend in earlier ice break-up,
using the Mann-Kendall trend test with a 99 % significance
level (p « 0.01). In addition, we consider the Viisterasfjir-
den, which is a waterway in the northwest part of the brackish
lake Milaren outside the city of Visteras, just below 60° N in
Sweden (See Fig. S6). Despite 38 years of missing data, with
the longest consecutive period of missing data being the 10-
year period from 1974-1985, the Visterasfjiarden has long-
term records with 234 years of break-up data (1711-2012)
and 69 years of freeze data (1870-1986). The lake displays a
significant trend in later freeze (p-value < 0.002); however,
we do not find a significant trend in earlier break-up. See
Fig. S1 for break-up observations from Visterasfjirden and
Torne River.

3.2 Significantly reduced ice duration from 1913-2014

Now we characterize the water bodies with minimal miss-
ing data by analyzing trends in the observed ice duration
and freeze and break-up dates (i.e., ice phenology variables)
from 1913-2014 using the Mann-Kendall trend test (Kendall,
1938; McLeod, 2011) at a 95 % significance level (Fig. 3).
Lakes and rivers with a maximum of 20 % missing obser-
vations were included in the trend analysis of ice duration
(40 water bodies), freeze date (47 water bodies) and break-
up date (57 water bodies). Since the Mann-Kendall trend test
is sensitive to missing data, and using a dataset with missing
data is a source of uncertainty, we excluded many observa-
tions sites in this analysis to have higher confidence in the
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presented results. The time period was chosen to be able to
look at long-term trends and include lakes and rivers across
the entire Sweden. A longer time period would result in less
water bodies or more missing data.

A significantly decreasing trend in ice cover duration was
found for 24 of the 40 (62.5 %) water bodies (Fig. 3a). A sig-
nificant trend in later freeze date was seen in 17 out of 47
(36 %) water bodies (Fig. 3b) and an earlier break-up was
observed in 32 out of 55 (58 %) water bodies (Fig. 3c). The
majority of water bodies with records of ice data from 1913—
2014 show a significant trend in decreasing ice duration and
earlier break-up. Only one lake exhibits a trend in earlier
freeze, Lake Flasjon (blue chevron in Fig. 3b).Of the wa-
ter bodies 40 displayed a significant trend in at least 1 of
the ice variables associated with a warmer climate, i.e., de-
creasing ice cover duration (Fig. 3a), later freeze (Fig. 3b),
or earlier break-up (Fig. 3c). Sites with a significant trend
were located both in southern (latitudes < 60° N) and north-
ern Sweden, and included lakes of a variety of sizes. A total
of 14 water bodies showed a significant trend in all 3 ice
variables associated with a warmer climate and of these sites
all except 1 are located above 60° N (i.e., northern Sweden).
Hence, our findings indicate that the ice duration is shrink-
ing over most of our study sites in Sweden mainly driven by
an earlier ice break-up and in some cases later freeze date.
For the lakes represented in Fig. 3, linear regression analy-
sis show that ice duration from 1913-2014 has decreased at
—1.8d per decade. In the same period, the freeze date oc-
curred 0.8 d later per decade whereas the break-up date was
observed 0.9 d earlier per decade.

3.3 Changes in timing of ice cover, 1985-2014
compared to 1955-1984

Figure 4 compares the distributions of observed ice duration,
freeze and break-up dates for the periods 1955-1984 and
1985-2014. The analysis includes all observed sites with a
maximum of 20 % missing data in the 30-year periods. The
Mann-Whitney-Wilcoxon test shows a significant difference
in the two samples at a 0.05 significance level for all ana-
lyzed groups in Fig. 4 (Bauer, 1972; Hollander and Wolfe,
1973). Figure 4a and d demonstrate that the ice duration
has decreased over the last 30 years, with a mean decrease
of about 11 and 28 d in northern and southern Sweden, re-
spectively. The shift in the mean ice duration is larger in
southern Sweden compared to the northern region. Although
shorter ice durations are more common in both regions dur-
ing 1985-2014 than 1955-1985, the shape of the ice duration
distribution between the two time periods also more greatly
differs in southern Sweden. Over the more recent 30-year
period in southern Sweden, the mean freeze date occurred
10d later (Fig. 4e), while the mean break-up date occurred
17d earlier (Fig. 4f) than previously observed. Consider-
ing the same time periods, the shifts in the mean timing of
freeze and break-up are smaller in northern Sweden, with the
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Figure 3. Trends in (a) ice duration, (b) freeze date, and (c¢) break-up date during 1913-2014. The number of water bodies and the corre-
sponding percentages of observation locations with statistically significant (p < 0.05) or insignificant trends are indicated.

mean freeze date observed about 4 d later (Fig. 4b), and the
mean break-up date occurring 5 d earlier (Fig. 4c) in the last
30 years. Comparing the mean temperature of the two time
periods using SMHI homogenized data, the mean tempera-
ture of the later period (1985-2014) is about 0.85 °C warmer
than during the earlier period (1955-1984).

Changes in the timing of ice cover have shifted the mean
duration, resulting from an increase in extremely short du-
rations (Fig. 4). Figure 4d indicates that during 1985-2014
southern Sweden experienced a 750 % increase in the num-
ber of years with less than 50d of ice cover relative to the
previous 30 years. In northern Sweden (Fig. 4a), an increase
of 300 % was observed in the number of years with an ice
cover duration of less than 100d. Hence, Fig. 4 highlights
differences in the ice duration distributions related to the ge-
ographical locations of the observations (i.e., northern vs.
southern Sweden), as well as the freeze date and the mor-
phological aspects.

An increase in the interannual variability of ice cover du-
ration could be an early warning sign of ecological regime
shift (Carpenter et al., 2011). Magnuson et al. (1997) demon-
strated that such an increase in interannual variability and
more frequent, extremely short durations of lake ice cover
have occurred since the 1950s across Canada, the USA, Fin-
land, Switzerland, Russia, and Japan. We also find an in-
crease in interannual variability across Swedish lakes and
rivers. The observations in Fig. 4 can be related to changes
in both mean and variance described by Benson et al. (2012).

The Cryosphere, 16, 2493-2503, 2022

We acknowledge that missing data could result in different
water bodies being represented differently in the two time
periods; however, we do not expect this to be a major source
of uncertainty.

3.4 Historical change in ice duration per 1°C of
warming

To better understand the drivers of variability in the ice
cover durations observed above, Fig. 5 characterizes the re-
lationship between the local mean annual air temperatures
(September—August) and ice durations using air temperature
observations from the Climatic Research Unit (CRU) ver-
sion 3.23 (Harris et al., 2013). A warmer mean annual air
temperature corresponds to a shorter ice duration (Fig. 5).
These relationships are also considered with respect to lat-
itude (Fig. 5a) (719 water bodies) as well as mean depth
(Fig. 5b), volume (Fig. 5c) and area (Fig. 5d) (464 lakes). In
Sweden, the climate is much colder in the northern regions
compared to the southern regions (Fig. 5a). The most north-
ern lakes are frozen for a longer period than southern lakes in
Sweden. In fact, some southern lakes might not freeze at all
in the winter. This results in latitude being the overall domi-
nant factor compared to the size (depth, volume and area) of
the lake. Larger water bodies (volume, depth, or area) gen-
erally have shorter ice durations compared to smaller ones.
Larger water volumes in lakes, for instance, often result in a
later freeze date and therefore contribute to a shorter ice du-
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ration. The break-up date, however, is not as sensitive to the
size of the lake.

We also quantified the change in ice cover duration rela-
tive to air temperature for 464 lake water bodies using tem-
perature and ice data from 1901-2014 (Fig. 6). We applied
linear regression to obtain the rate of change in ice duration
for each lake relative to a historical air temperature. The re-
sults indicated that an increase in air temperature is related to
a reduced ice duration (Fig. 6a), a later freeze date (Fig. 6b)
and an earlier break-up date (Fig. 6¢). For lakes with a lower
latitude (southern Sweden) we see more sensibility per 1 °C
increase than at higher latitudes. In southern Sweden (below
60° N), mean ice duration decreases by 22.5d per 1°C in-
crease, with the mean break-up date occurring 11.2d earlier,
and the mean freeze date occurring 8.1d later. In northern
Sweden, the shift per 1 °C increase is smaller, with mean val-
ues for ice cover duration decreasing by 7.6 d, the freeze date
occurring 3.6d later, and the break-up date occurring 4.4d
earlier per 1°C of warming (see also Figs. S4 and S5 for
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more information on break-up date and freeze temperature
relationships).

4 Discussion and conclusion

We show that for many water bodies in Sweden, freeze dates
are occurring later in the season while break-up dates are oc-
curring earlier (Figs. 1-4). As a result, the ice cover dura-
tion has decreased in many of the observed lakes (Figs. 2—
4). Moreover, we find an increase in the number of years
with extremely short ice cover duration (Fig. 4), especially
in the last 30 years (i.e., 1985-2014) in southern Sweden
(latitudes < 60° N). The break-up date is similar for lakes in
similar geographic regions and is not dependent on the size
of the lake (Eklund, 1999). As shown in Fig. 1, earlier ice
break-up was observed over all of Sweden.

Earlier ice break-up affects the productivity and biodi-
versity of phytoplankton (Leppédranta et al., 2003), reduces
winter-dependent zooplankton species, and decreases fish
production while increasing winter fish deaths (Watz et al.,
2015; Leppéranta et al., 2003). Moreover, with a decrease
in ice duration, the photosynthesis in the lakes and rivers
extends longer into the fall season and starts sooner in the
spring. Longer durations without ice cover have a larger im-
pact on the mixing patterns of the lake. Moreover, the depth
of the mixing layer is related to light availability, phytoplank-
ton density, and the carbon to nutrient ratio of phytoplankton,
as well as zooplankton biomass, which may have effects on
higher trophic levels (Berger et al., 2006).

We demonstrate that ice cover duration has decreased in
Sweden, and thereby the periods with suitable conditions for
the use of frozen rivers and lakes as ice roads in northern
Sweden have decreased by approximately 7d of ice cover
per 1°C of air temperature increase. Here, we investigate
changes in the ice cover duration from first complete ice
cover to complete break-up; however, further investigation
of changes in ice thickness would be beneficial for assess-
ing the safety of transportation over ice as well as the oc-
currence of multiple ice periods. Similarly, while the season
for ice-related recreational activities will shorten, again other
factors such as ice thickness should be taken into account for
the safety of individuals partaking in activities on frozen wa-
ter bodies.

In Sweden, a more drastic shift in ice break-up dates is ex-
pected with increasing air temperature in temperate regions
(average air temperatures of 5-7 °C) compared to colder re-
gions (—2-2 °C) (Weyhenmeyer et al., 2004). Our results re-
veal that drastic changes in southern Sweden appear to al-
ready be occurring (Fig. 4). Similar results were also found in
Finland, with a larger change in southern compared to north-
ern Finland (Korhonen, 2006). Weyhenmeyer et al. (2004)
found that the nonlinear relationship between break-up date
and the mean annual temperature across Sweden can be rep-
resented using an arc cosine function. They also analyzed
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the amplitude of annual air temperature cycles as a proxy
for solar radiation, concluding that in climate regions with
larger temperature differences between winter and summer
months, the sensitivity of ice duration to temperature changes
is smaller than in regions with a smaller annual air tempera-
ture amplitude (difference from maximum to minimum tem-
perature). Thus, lakes and rivers in the southern part of Swe-
den are more vulnerable to increasing temperature than re-
gions with a larger temperature difference between summer
and winter months.

During the period of 1959-2014, southern Sweden exhib-
ited a large rate of change in ice duration according to the
studies found and referenced herein (Table S1 in the Sup-
plement). According to SMHI harmonized temperature data,
the mean change in air temperature in Sweden was about
40.09 °C per decade from 1901-2014 (Alexandersson and
Moberg, 1997; Moberg and Alexandersson, 1997; Moberg
and Bergstrom 1997). Here we observed 1.9 d per decade less
ice duration during the same period. For comparison with
previous studies, Table S1 summarizes the changes in ice du-
ration, freeze date and break-up date from previous studies
on inland ice cover (Magnuson et al., 2000; Benson et al.,
2012; Takacs, 2011; Latifovic and Pouliot, 2007; Jensen et
al., 2007; Hodgkins, 2013). For the most part, our updated
rates indicate a more rapid change in ice properties in recent
years. For example, in our analysis for the period 1959-2014,
the corresponding rates of change for later freeze (42 d per
decade) and earlier break-up dates (—2.9 d per decade) across
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Sweden are 3 and 4 times faster, respectively, than those re-
ported in Magnuson et al. (2000) for lakes across the North-
ern Hemisphere from 1846-1995 (Table S1).

Moreover, air temperatures at high latitudes are increas-
ing more rapidly than the global mean temperature, making
studies related to lake and river ice increasingly more impor-
tant. Historical data and model predictions indicate that the
average temperature of cold days has increased more than the
mean temperature in eastern and northern Europe (Vautard et
al., 2014; Kjellstrom, 2004). Hence, the winter temperatures
of this region are likely to be more affected by climate change
than the annual mean temperature. Sharma et al. (2021) sug-
gested that rapid changes in northern ice pattern can be due
to the polar amplification (Post et al., 2018). More research in
this area is warranted to quantify or isolate the effects of po-
lar amplification and investigate other potential drivers, such
as oceanic and atmospheric circulation patterns (Korhonen,
2019).

Future research is needed to assess the influence of re-
duced ice cover duration on the lake and river water quality
and ecology including potential eutrophication, acidification,
regulation, and flow pattern changes. The consequences of
the release of nutrients and oxygen-demanding substances
cannot yet be forecast for ice covered lakes (Bengtsson,
2011). Given the significant changes in ice cover duration
that we characterized across Sweden, incorporating ice cover
into the overall picture of impacts on freshwater resources
may be helpful for improving the understanding of variabil-
ity within freshwater systems.

Finally, we acknowledge that regulation of lakes and rivers
may also influence the trend in freeze and break-up dates,
potentially leading to either an earlier or later freeze date than
would naturally occur. Although, hydroelectric power plants
expanded in Sweden in the period of 1950-1970, regulation
is typically constant over time once it is established

Appendix A

We used the air temperature data from the Climatic Research
Unit (CRU) v 3.23 (Harris et al., 2013) to assess the relation-
ship between temperature and all of the freeze date, break-
up date, and ice duration observations (Figs. 5 and 6). The
spatial resolution of the CRU monthly mean air temperature
data is 0.5 x 0.5° and the temporal coverage is 1901-2014.
The average air temperature for the ice year was derived us-
ing the average of the monthly mean values from September
to August.

We coupled the ice data record with information from
Swedish Water Archive (SMHI, 2012) to derive informa-
tion about the water body (such as location, areal extent,
depth etc.). The geographic location and shape of the lakes
was used to extract corresponding data from the lakes, using
the shape files from SVAR (Swedish Water Archive 2012,
SMHI). For larger lakes overlapping several CRU grid cells,
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we used the average temperature value of those cells to rep-
resent the air temperature over the lake (Figs. 5 and 6). Our
analysis includes all ice observations within the time period,
where large lakes with multiple observations and lakes with
more observations are more frequently represented than oth-
ers (Figs. 5 and 6).

In Figs. 5 and 6, ice duration was coupled with mean
annual temperature from September to August. The mean
correlation of ice duration and air temperature (September—
August) was r = —0.54. Freeze date was coupled with mean
temperatures from October to December, and break-up dates
with mean temperatures from March to May. The break-up
date has a stronger mean correlation with temperature (r =
—0.69, temperatures March—May) compared to the freeze
date (r = 4-0.50, temperatures October—December).

Data availability. The ice freeze and break-up observations are
available from the Swedish Meteorological and Hydrological In-
stitute (SMHI) (https://vattenwebb.smhi.se/station/, SMHI, 2016)
Air temperature data are available from the Climatic Research Unit
(CRU) (Harris et al., 2013). Lake and river information are avail-
able from the Swedish Water Archive (SVAR) at SMHI (https:
/Iwww.smhi.se/data/hydrologi/svenskt-vattenarkiv, SMHI, 2012).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-16-2493-2022-supplement.
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